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Longuet-Higgins’s (1976) analysis of energy transfer within a narrow spectrum of 
gravity waves with approximately uncorrelated phases is generalized to accom- 
modate capillarity and weak damping. The analysis is based on the corresponding 
generalization of Zakharov’s (1  968) evolution equation for weakly nonlinear, deep- 
water gravity-wave packets. The results for a symmetric normal spectrum are 
expressed in terms of elliptic integrals and depend, after appropriate scaling, on a 
single similarity parameter and on the sign of the curvature of the linear dispersion 
relation. Energy transfer is away from the peak of that spectrum if kl, < 0.393, 
where k is the wavenumber and 1, is the capillary length (2.8 mm for water), but may 
be towards the peak if 0.343 < kl, < 0.707 (4.5 cm > 27c/k > 2.5 cm for water). The 
formulation is based on energy exchange through resonant quartets and is not valid 
in the neighbourhood of kl, = 0.707, a t  which the second harmonic of a 
capillary-gravity wave resonates with its fundamental (Wilton’s ripples). The 
modulational instability of a weakly damped capillary-gravity wave is examined in 
an Appendix. 

1. Introduction 
Longuet-Higgins (1  976, hereinafter referred to as LH followed by the appropriate 

equation number or section) shows that the action density (w,/kz)N(K) a t  the 
wavenumber 

k = (k,,O)+ek,K, K = ( h , p ) ,  ( l . l a ,b )  

and frequency w = wo( l  +€%) ( 1 . l c )  

of weakly nonlinear, deepwater gravity waves with approximately uncorrelated 
phases in a reference frame moving in the primary (x) direction with the group 
velocity dw,/dk, is governed by (LH, (4.11)) 

wherein 

X d((Tl + f12 - f13 - (T4) 6(Kl + K, -K3 -K4) dK2 dK3 dK4, (1.2a) 

7 = 20, t  (1.2b) 

is a slow time, 6 is Uirac’s delta function, and drc, = dh,d,un. The parameter e is a 
measure of the wave slope, and the implicit limit in the derivation of (1.2) is .e 4 0 with 
K, (T and 7 = O( 1 ) .  Longuet-Higgins also shows that the flow of energy away from the 
peak of the symmetric normal spectrum (here Q = 2QLH) 

(1.3) N(,.-) = N o  e - ~ ( P h 2 + Q p 2 )  
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is governed by (LH, (9.3)) 

where H ( x )  = H(l /x )  is a function that decays slowly from 65.82 a t  x = 1 to 0 a t  
x = 0 (LH, table 1,  after correcting for a missing factor of 2).  I present here the 
generalizations of (1.2) and (1.4) to weakly damped, capillary-gravity waves. 

The changes in (1 2)  and (1.4) due to capillarity without damping may be inferred 
from similarity considerations. Expanding k = I k I and the linear dispersion relation 
w = wo ( E )  about e = 0 and neglecting O(e3),  we obtain 

k x k,( 1 + eh +$e2,u2), w x w, + EW; k, h +$e2(ki  w i  A2 + k, w;,u2),  (1.5a, b)  

wherein w, = wo(k,). The effect of observing the envelope (i.e, the complex amplitude 
of the carrier exp [i ( k , x - w ,  t ) ] )  in a reference frame moving in the x-direction with 
the group velocity wh is to shift the frequency by wh ek, h (eEo h is the x-component 
of k- ko),  whence the dimensionless frequency of the envelope on the hypothesis of 
infinitesimal amplitude is (I use a where Longuet-Higgins uses w )  

where (1.7a, b )  

Amplitude (nonlinear) dispersion for a monochromatic wave of complex amplitude 
a adds a term Ck2 I a I 2wo to w (C is the Landau constant) and a corresponding term to 
a ;  however, this term may be evaluated at k = k, and therefore is independent of h 
and ,u and does not affect crl + a2 - a3 - a4 in (1.2). 

Nonlinearity also enters the amplitude-evolution equation, which would be 

a, =-iCw,k~Ia12a (1.8) 

for a monochromatic wave of slowly varying amplitude and is given by LH, (4.3) for 
a gravity-wave packet, for which C = $. Introducing the factor 2C on the right-hand 
side of LH, (4.3), we find that 4C2 appears on the right-hand side of LH, (4.11). It 
follows that capillarity may be accommodated in (1.2) by introducing 4C2 on the 
right-hand side thereof and calculating ul + a2 - a3 - a4 from (1.6) in place of LH, 
(3.2), in which L and M (in the present notation) assume their gravity-wave values 
- t  and a, respectively. It then follows from similarity considerationst that the 
counterpart of (1.4) for an undamped surface wave characterized by the linear 
dispersion relation w = w,(k) and the Landau constant C(k) must be of the form 

which reduces to (1.4) for C = i, L = -: and M = f :  however, H depends on sgn L 
(M is positive-definite - see §2),  and Longuet-Higgins’s result for H may be used in 
(1.9) only for L < 0. I obtain the corresponding result for L > 0 (2x/k < 4.5 cm for 
water) in $ 4  and show that energy transfer is towards the peak in part of this 
domain. 

t These similarity arguments also may be used to generalize Pox’s (1976) results. 



Evolution of a capillary-gravity wave packet 143 

The effects of weak damping require a more detailed analysis for their derivation. 
A heuristic procedure, suggested by the solution of the Landau equation (cf. (1.8)) 

a,+w,Da = -iCwok21aJ2a, (1.10) 

where D is the damping ratio (of actual to critical damping), is to replace the 
operator d/dr in (1.2) by (d/dr)+2a, wherein 

(1.11) 

is scaled to complement the scaling of r = c2w0t, and the factor of 2 reflects the fact 
that N is proportional to the square of the amplitude. The change of variable 

(1.12a,b) 

together with the incorporation of the factor 4C2 (see above), then yields 

x 8(gl + c2 - g3 - v4) 8 ( ~ ,  + K~ - K~ - K ~ )  dK2 dK, dK4, (1.13) 

which proves valid for a J. 0 with ar fixed and implies N = O(a-l eW2OrT) as a7 t GO. 

I proceed as follows. In  $2, I derive the evolution equation for the envelope of a 
weakly nonlinear, weakly damped, deep-water, capillary-gravity wave packet. The 
end result, (2.10), is a generalization (to incorporate damping) of Djordjevic & 
Redekopp's (1977) generalization (to incorporate capillarity) of Zakharov's (1968) 
and Davey & Stewartson's (1974) equations. The spatial operator in these evolution 
equations is elliptic/hyperbolic for L 2 0. 

In $3, I posit the envelope as a Fourier superposition of elementary waves with 
amplitudes that are densely distributed over the K-spectrum and phases that are 
approximately uncorrelated. (This last approximation is, in effect, a closure 
hypothesis.) The analysis follows LH, $4, with d/dr replaced by d/dr+2a when 
operating on action and 6(ul + u2 - cr3 - g4) replaced by a response function that is 
asymptotic (as ar t GO) to a simple resonance curve (the Witch of Angesi) with a half- 
power bandwidth of 401. I then let a $ 0 with T fixed to obtain (1.13). 

In  $4, I invoke (1.3) and express the counterpart ofH in (1.19) for both L > 0 and 
L < 0 in terms of elliptic integrals. 

The evolution equation (2.10) also may be used to determine the effect of weak 
(a  = O( 1)) damping on modulational (sideband or Benjamin-Feir) instability. The 
results appear to be worth recording but are of only peripheral interest in the present 
context, and I therefore have relegated their derivation to Appendix C. 

The present results are limited by the narrow-band approximation ( E  $ 0  in (1 .1) ) .  
Dungey & Hui (1979) have obtained the second approximation for a gravity-wave 
spectrum of small but finite bandwidth and have shown that finite-bandwidth 
effects are essential in the analysis of the JONSWAP spectra (Hasselmann et al. 
1973). It would be desirable to extend Dungey & Hui's analysis to include capillarity 
and damping, but the anticipated algebraic complexity of the coupling coefficient 
G ( K , ,  K ~ ,  K ~ ,  K ~ )  (which reduces to a constant in the limit E $ 0) is forbidding. 
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2. The envelope-evolution equation 

capillary-gravity wave of the form 
The dispersion relation for a weakly nonlinear, weakly damped, deep-water 

> >  (2.1) 6 R e 2  = Re{a ei(k.x-wt) 

where 5 is the free-surface displacement, 2 is its complex counterpart, Re implies the 
real part of, and a is a complex amplitude, is given by? 

w = w,(k)[1+Clc2)2)2- iD]  =Q(k,kJZJ),  ( 2 . 2 )  

where w,(k)  = ( g k + T k 3 ) i ,  k = I k 1 ,  (2 .3a,  b )  

R = k - = kl , ,  (3 8 + 42 + 2 ~ 4  
l6( 1 + R 2 )  (1  -242) ’ 

G =  (2.4u, b )  

7’ is the surface tension divided by the density, C is the Landau constant, 1, = 
(T/g)i  is the capillary length, v is the kinematic viscosity and I, = (2v/w,)i  is a viscous 
length. By ‘weakly nonlinear ’ and ‘weakly damped ’, we imply k 2  I a I < 1 and D = 

The damping ratio ( 2 . 5 ~ ~ )  is based on the assumptions of a clean surface and a thin 
boundary layer (Lamb 1932, $348). The damping ratio for a conta,minated surface 
lies between (kl,)’ and $kl,  (Miles 1967) and is given by (Lamb 1932, $351) 

O(k21rc12). 

D = Lkl 4 u  

for a saturated (inextensible) surface. Rewriting (2.5a, b )  as 

(2.5b) 

D = 2vg:TT-$&( 1 + RZ)-i ( 2 . 6 ~ )  

and D = 2-tvig&’-&& 1 + Az)-a, (2 .6b )  

we obtain D = 0.0021 and 0.011 respectively, for water ( v  = 0.010, g = 980, T = 79 
in c.g.s. units) a t  k? = +. 

The evolution equation for the complex wave packet 

, (2.7) = d ei(k,x-w,t) 

where d is a dimensionless, slowly varying complex envelope and w, = wo(k , ) ,  may 
be posed in the form 

Z ,  = - i ~ ( ~ , t . ) d l ) ~ ,  i~ = (a:+ai)i, (2.8a, b )  

which is a generalization of 2, = -iwZ for the elementary wave (2 .1) ;  cf. Davey 
(1972) and Whitham (1974, 8 17.7). Introducing the slow variables 

g = €k,(X-wW;It), 7 = &,y, 7 = €2W,t (2.9a, b ,  c )  

in a reference frame moving with the group velocity wh = wh(k,), expanding the 
operators iQ and 1K about iw, and ik,, respectively, and letting c 4 0 with d ,  [, 7 ,  
7 = O(1)  and D = O(s2), we obtain 

[i(a,+ a) + L i3; +M a; -C I d 1 2 ]  d = 0,  (2.10) 

t I recollect that  this result is due to  Harrison (1909), but I have been unable (at this time) to  
obtain the original reference. 
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where a = D/e2  (1.11) and L and M ,  defined as in (1.7),  are given by 

L = -  kiw; = -(1-6A2-3A4) , M = O = - -  Ic 1(1+3d2) (2.11a,b) 
8( 1 + k2)2 2w0 4 1+A2 * 200 

Setting a = 0 and allowing for differences in notation, we recover Djordjevic & 
Redekopp’s (1977) evolution equation. 

The parameters I L I , M and I C I , but not sgn L and sgn C, may be eliminated from 
(2.10) by resealing 6, 7 and d, respectively. We note that C 3 0 for A 5 0.707 and 
L 3 0 for A 3 0.393 and that C, L and M vary through (t, + m ,  -A), ( - i , O , t )  and 
(a,i), respectively, as A varies from 0 to 00. The dispersion relation (2.2) and the 
evolution equation (2.10) obviously break down in the neighbourhood of A2 = t ,  for 
which the elementary wave (2.1) resonates with its second harmonic (Wilton’s 
ripples). Moreover, without damping, self-focusing may occur for A2 > (Ablowitz & 
Segur 1979), although it seems likely that damping vitiates this singular behaviour. 
In any event, the domain of principal interest for waves in the open sea is d2 < B. 

3. The spectrum-evolution equation 
We pose the general solution of (2.10) for an unbounded domain in the form 

where the summation convention holds for repeated indices except as noted, the 
summation is over the K = (A,,pn) spectrum, 

v, = LA; + M p ;  +/3(7), (3.2) 

and /3, which represents amplitude dispersion, is real and indep,endent of n (see 
(A 7)  below). Substituting (3.1) into (2.10), invoking (3.2), and equating coefficients of 
exp [i(A, g+p, 7)], we obtain 

where (3.4) 

ejlm = exp ( - iv,,,, 7), ail= = v, + r1 - v, - v, , (3 .5a,  b )  

a: is the complex conjugate of a,, and, here and subsequently, the subscript n on an 
equation number implies that n is not summed in that equation. The condition 
K ~ +  K~ = K ,  + K ,  implies that K,, . . . K ,  are the corners of a parallelogram in the 
K-plane. The quartet is resonant for vj+ vl = v, +v,, and K,, . . . K ,  then lie on an 
ellipse/hyperbola for L 3 0. 

We now suppose that the a, in (3.1) are densely distributed in the K = (A,p)-plane 
with approximately uncorrelated phases, such that (cf. LH, (4.2)) 

A ,  =;la,l2 - N ( K , ~ ) ,  (3.6) 

where the overbar signifies an ensemble average, and N is a dimensionless action 
density, for which the dependence on 7 is henceforth implicit. The total action is 
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given by (Longuet-Higgins uses A for his envelope and M for the total action) 

A = &a,a,* - J ~ ( K )  dK (dK = dh dp). (3.7) 

Multiplying (3.3) by a t ,  adding the complex conjugate of the result, and averaging, 
we obtain (cf. LH, (4.4), in which C, = 2A, in the present notation) 

where 

(&+2a)A, = -CSjl,, Re{iBil,,e5,?ii?i}, 

B5,= = aj  a, a: a,*. (3.9) 

Summing (3.8) over n, invoking (3.7), and remarking that the quadruple sum 
B. - ell,, is real (which may be confirmed by interchanging j and m and 1 and n and 
invoking emnjl = eg,,), we obtain 

-+2a A = 0. 
G 7  1 (3.10) 

It follows that the total action decays according to 

A = e-2a7, (3.11) 

where d is a constant. Corresponding results for momentum and energy are derived 
in Appendix A. 

Proceeding as in the derivation of LH, (4.7), we construct (d/dr+4a) B,,,, with 
the aid of (3.3) and invoke the approximation of uncorrelated phases to simplify the 
result (cf. LH, (4.5) and the immediately following argument), which then may be 
reduced to 

where I ; lmn = (Aj + A 1 )  A m  An - ( A m  +An 1 Aj A , .  (3.13) 

The approximation of uncorrelated phases implies B,,,, = 0 unless either j = m 
and 1 = n o r j  = n and 1 = m, whence, after invoking (3.6), 

Bj,,, = 4 ( 8 j m  81, +Sin S l m )  A m  An (3.14)jlmn 

in first approximation. The right-hand side of (3.8) then vanishes, and the 
corresponding approximations to A ,  and qlmn are 

A,(T) = A ,  ePzaT, qlmn(7) = qzmn e-6aT, (3.15a, b) 

where d, and qlmn are constants. Substituting (3.15b) into (3.12), integrating, and 
choosing 7 = 0 (which corresponds to 7 = - a in Longuet-Higgins’s formulation) as 
a time a t  which the phases of the a, are uncorrelated and (3.14) holds, we obtain the 
second approximation 

1 

- 

1 -e-(za- iU)T 

BiZG(7) = 4(aim S,, + S i n  aim) Am A, e-4aT- 16iCSj1,, elm, e-4aT [ 1, 201 - i a  

(3.16)jlmn 
wherein a E ail,,. Substituting (3.16) into (3.8) and solving for A,,  we obtain the 
second approximation 

An(7) = e-2aT[dn -8C2S51?ii?i4~mn R(ajjlM, 7)], (3.17)n 
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where 
1 - 2 e-2aT cos a7 + e-4aT 

4a2 + a2 
R(U,7)  = (3.18) 

is a response function for the K ~ , ~ , ~ , ~  p uartet that grows like sin2 UT for a7 4 1 and 
is asymptotic to a resonance curve with a half-power bandwidth of 4a for a7 $ 1. 

Invoking (3.6) and transforming the summations overj, 1, m in (3.17) to integrals 
over K ~ , ~ , ~  as in (3.7), we obtain 

N ,  = e-2aT[.i.l + 8c2 1.. . /cz34 R(U, + (T2- U3-g4 ,  7) 8 ( K 1  K z -  K 3  -K4) dKz dK3dK4 , I 
(3.19) 

where E234 = ( ~ ~ + ~ 2 ) ~ 3 ~ 4 - ( ~ ~ + ~ 4 ) ~ 1 ~ 2 ,  Nt k ( K $ ) .  (3.20a, b )  

Following LH, §B, we let K ~ , ~  = R ~ K ' ,  K ~ , ~  = RTrc", where W =- ~ ( K ~ + K ~ )  = $ ( K ~ + K ~ )  

is the centroid of the parallelogram defined by K ~ , ~ , ~ , ~ ,  or, equivalently, 

K 2  = K 1  + 2K' ,  

and carry out the K~ integration, and invoke 

K, = K1 + K' - K", K4 = K1 -k K' + K", (3.21 a, b,  c) 

(3.22) 

(LH, (B 1) gives 2 for this Jacobian, an error also noted by Dungey & Hui 1979) to 
reduce (3.19) to 

(3.23) 

wherein fT = a1+a3-fTz-Cl4 = 2L(A'2-h"2)+2M(p12-pu"2). (3.24) 

We now suppose that a @ 1, so that the resonance is sharp. The integral in (3.23) 
then is dominated by the contributions from the neighbourhood of u = 0, and we 
may approximate R(u,~) by 

m 

R(a, 7 )  - 6 ( g )  / R(a, 7 )  d a  = 2n6(a)T(7) (a  4 O ) , t  (3.25) 
-m 

where 

as in (1.12b).  Substituting (3.25) into (3.23), we obtain 

(3.26) 

(3.27) 

which is the integral (with respect to T) of (1.13) after invoking (3.21) and carrying 
out the integration with respect to K~ therein. 

t The implicit limit in (3.25) is a J 0 with a7 fixed. The limit a J. 0 with 7 fixed yields T 1'7, but 
this approximation clearly is not uniformly valid as 7 1' 00. 
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pgr 134 234 123 124 

Cl 4 8 6 6 
C2 0 0 -2  2 
Cl, 2 6 5 5 
c12 0 0 -2  2 
c 2 2  2 2 1 1 

s 2 2 4 3  2 2 
R 4 8 4 4 2  4 4 2  

TABLE 1. The coefficients in (4.4) and (4.15) 

4. Evolution of peak density 
We posit the symmetric, normal spectrum 

@ ( K )  = N ,  exp ( - $ ~ ~ 2 - ~ & p 2 )  (4.1) 
(cf. LH, (9.1), but here Q = 2QLH). Substituting (4.1) into (3.27) and letting K, = K 

and &, = fi, we obtain 

N ( K , 7 )  = e-”’[fi(K) + G ( K ) g 3 ( K ) T ( 7 ) ] ,  (4.2) 

where ’ = G134+G234-G123-G124, (4.3) 

GpQ, = 64nC2 [[/[exp [ -$PFpQr(h, h’, h”) -&@‘pqr(p,p’,p”)] &(a) drc‘dK“, (4.4) 

r is given by (3.24), and 

FPQ,(h,h’,h”) = n;+h;+h;-3A2 (4.5a) 
(4.5b) = c, hA’ + c2 Ah‘‘ +GI, A‘, + c,, h’h“ + c,, A“,. 

The coefficients C,, . . . , C,, are given in table 1. 
The reduction of the integral in (4.4) depends on sgn L. Assuming L > 0, we 

introduce the elliptic-polar coordinates p,  6’ (p = constant is an ellipse in the K-plane) 
through the transformation 

K = (A, p)  = - p(L-4 cos 0, M-i sin 0) (Eg 
and similarly for K‘ and K ” ,  so that (3.24) transforms to 

(4.7) 

Substituting (4.6) and (4.7) into (4.4) and carrying out the integration with respect 
to p”, we obtain 

where (4.9) 

JPQT = 16n Inrn lo‘ exp [-+pp’+,,,(O, B’, O ” ) - ~ p ’ 2 ~ P , , ( B ’ ,  f?”)]p’dp’dO’dO”, 

(4.10) 
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q5pqr = y(C, CCI + c, cc”) + y-yc,  SS! + c, SS”).  

@.,,,. = y(c,, d 2  + c,, C’C’’ + C,,C”~) + y-l(c,, S” + C,, S’S” + C,, s”), 
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(4.11) 

(4.12) 

c = cos 8, s = sin 8 and similarly for 8’ and 8”. 

function for p > 0, is elementary in the important special case p = 0 and yields 
The integration with respect to p‘ in (4.10), which yields a complementary error 

which may be reduced to (Appendix B) 

Ipqr (y )  = 128ff2(R2 +S2p2)-:K[Sp(R2 +X2p2)-i]] ,  

R = [(C,, + C22)2-CZ,2]i, S = (Cll C2, -$2iz);, where 

M p :  LQ t 
+~l=~(~)-(m) I) 

and K ( k )  is a complete elliptic integral of modulus k. The function 

‘(7) = ‘134+’234 - I 1 2 3  -‘124: 

in terms of which (4.2) reduces to 

f l ( O , 7 )  = e-2”’[~(0) +c2(LMP&)-iI(y) @(o) T(T) ] ,  

is plotted in figure 1. The limiting values are given by 

I p q r ( 1 )  = - 647c3 R ’  I(1) = 167c3(i- 4 2 )  = 42.56, 

, 1- 267,~-~(0.750-1np) (p t  00) .  

(4.13) 

(4.14) 

(4.15a, b )  

(4.16) 

(4.17) 

(4.18) 

(4.19a, b )  

(4.20 a ,  b )  

We remark that I > 0, and hence energy flows towards the peak, for 0 < p < 1.86. 
If L < 0 (4.6) may be replaced by 

(4.21 a )  

where p = constant is a hyperbola, and the f sign corresponds to those hyperbolae 
opening towards h = f co ; those hyperbolae opening towards p = f co correspond 
to 

(LI M : 
( h , p )  = (r) p( ILI-fsinhO, fM-icosh8). (4.21 6 )  

Proceeding as above then leads to a representation of Ipqr(y)  that comprises eight 
integrals, corresponding to the four possible sign combinations in the (K’, K”)-plane 
and the complementary transformations (4.21 a, b ) .  The end result, after a reduction 
similar to  that in Appendix B, is (cf. (4.14)) 

(4.22) 
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FIGURE 1. The integral I ( ? ) ,  as given by (4.17) and either (4.14) for L > 0 (-) or (4.22) for 
L < 0 (---). 

where M P  ILI Q 
ILI Q 

and R and S are given by (4.15). The limiting values are given by 

1 2 8 ~ ~  K 1 - -  ([ (;))'I) , 
IpqA1) = - R 

(4.23) 

(4.24) 

which yields I (  1) = - 65.814, in agreement with Longuet-Higgins's numerical 
integration (after incorporating a missing factor of 2), and (cf. (4.20)) 

(4.25) 

I ( y ) ,  as defined by (4.17) (note that I(?) = - H (  I y I )') in Longuet-Higgins's notation) 
is plotted in figure 1. 

The numerical calculations for figure 1 were carried out by Ms Diane Henderson. 
This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE81-17539, by the Office of Naval Research 
under Contract N00014-84-K-0137, 4322318 (430), and by the DARPA Univ. Res. 
Init. under Appl. and Comp. Math. Program Contract N00014-86-K-0758 admin- 
istered by the Office of Naval Research. 
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Appendix A. Momentum and energy 

forms 
The dimensionless momentum and energy of the envelope may be placed in the 

r r  

and 

where ( ) signifies a spatial average and V = (iiIt,i3J. Multiplying (3.3) through by 
~ , a : ,  proceeding as in the derivation of (3.10), permuting ( j , l , m , n ) ,  and invoking 
K~ + K~ = K ,  + K,, we find that the momentum decays according to 

M = M, e-2aT. (A 3) 

The evolution equation for the energy is more involved. Differentiating (A 2) with 
respect to 7, invoking &, = 8, and proceeding as in the derivations of (3.10) and 
(A 3), we obtain 

= PA+&'CS,,,, Re{iu,l,,BjlEejlE}. (A 4b) 
To determine P, we multiply (2.10) by d*, add the complex conjugate of the 

result, take the spatial average (note that (d*d[,) = -(d,dT) and (d*d,,) 
= -(d7d;)), and invoke the first equality in (A 2) to obtain the alternative 
representation 

E = ~ ( L d t d g * + M d , d ~ + C d 2 d * 2 )  (A 5a)  

(A 5 b )  2 -  
= !$(LA: +MPn) an an +C8j1?ii?tBjl?ii?iejl?ii?tI> 

where Bjl,, is defined by (3.12). Comparing (A 5 b )  with (A 2) and invoking (3.2), we 
obtain - 

Pan a,* = CSjl?ii?iBjliiiiiejl?ii?i. (A 6) 

Substituting (3.14) into ( A 6 )  and invoking a,= 2A, we obtain the first 
approximation 

P = 4CA.t (A 7 )  

Substituting (A 7) into (A 4b), remarking that the second term on the right-hand side 
thereof vanishes (since the quadruple sum is real) in this same approximation, and 
invoking (3.11), we obtain 

($+2a)E = - 

which admits the integral 

E = (E,-4CAt) e-2a'+4CAi e-4a7, (A 9) 

where A ,  = d and E, are the initial values of A and E.  

not, but (A 9) does, depend on the approximation of uncorrelated phases. 
We emphasize that (3.11) and (A 3) for the decay of the action and momentum do 

t (A 7 )  does not hold for a non-random wave, for which /3 = 2CA. 
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Appendix B. Reduction of I,,, 
We require 

d8’ d8” 
I = 16x In 

--T $(e, 8“) ’ 
where 2$(0’,e”) = (y+y-l)(Cll+C,,)+(y-y-l)(Cll cos28’+C,, cos28”) 

Converting the integrals over the second, third and fourth quadrants of the (O‘, 8“)- 
plane to integrals over the first quadrant and introducing 

+ C,,[(y + 7-1) cos (8’- 8”) + ( y -  y-1) cos (8’ + 071. (B 2 )  

a = 8’+8”, p = -0’”’’ (B 3) 

and 2$(a,p) = w [ ~ ( ~ - P ) , + + P ) I  (B 4a) 

= (Y+Y-l)(~ll+C,,)+(y-y-l)[Cll c O s ( ~ - P ) + C , z  cos(a+P)I 

= a+b cosp+c  sinp, 

+C,,[(y+y-l) cosp+ (y-y-1) cosa] (B 4b)  

(B 4c) 

we proceed through the sequence 

I = 32x [ [$-l(B’, -0”) + $-l(0’, e”)] dB’dB” 

- - 

which, after identifying A and B through (B 4), yields (4.14). 

Appendix C. Modulational instability 
A particular solution of (2.10) that describes an envelope of slowly decaying 

amplitude, wavenumber ek,(h,,u) and slowly varying frequency ezw0 g(7)  is given by 
(cf. (3.1)) 

d = do exp{ -ai+i[d[+,u7-l  r ( ~ ) d 7 ] }  = d ( O ) ( C , 7 , 7 ) ,  (C 1 )  

where do is a complex constant and 

4 7 )  = Lh2+M,u2+GIdoI ePza7. (C 2) 

(C 3) 

We explore the stability of (C 1 )  by considering the perturbed envelope 

d = d a Z ‘ O ’ ( &  7 , ~ )  [ 1 + 4 6  y,7)1 ( I a I -+ 1). 
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Substituting (C 3) into (2.10), invoking (C 1) and neglecting O(a2),  we obtain 

{i& + 2Lh a,+ 2Mp a?) + L 3; +M a,”} a = 2C 1 do) I 2ar, (C 4) 
where a, is the real part of a. Separating the real and imaginary parts of (C4), 
posing 

(ar,ai) = ~ e { ( a , , b , )  exp[ i (~ , t+p1q-J  0 r,d7)11, (C 5 )  

where a, and b, are complex constants, A, and p, are real constants and (r, is a 
possibly complex function of 7 ,  and requiring the determinant of the resulting linear 
equations for a, and b, to vanish, we obtain 

r, = 2(Lhh, +Mpp,)* [ (Lh~+Mp~)2+2C(LA~+Mp~)  I d ( O )  I ”$. (C 6) 

It follows from (C 6) that the perturbation 1 d I - Idao) I is unstable if and only if 

It follows from (2.4) and (2.11) that A > 0 is possible if and only if either 

0 < A < 0.393 (C > 0,  L < 0 )  (C 8 a )  

or A > 0.707 (C < 0,  L > 0 ) ,  (C 8 b )  

but is not possible if 0.393 < A < 0.707 (C > 0,  L > 0). If either (C 8 a )  or (C 8b) is 
satisfied the critical amplitude of I do) 1 for the modulational instability is determined 
by A = a and 

I d ( 0 ) I  > I;/ - = d*. (C 9) 

The maximum rate of growth of the perturbation is 

(r i )max-a = IC( Id(o)12-a a t A  = ICI I d ( O ) I 2  > a .  (C 10a, b) 

The maximum value of a perturbation for which A = I C I Ido I a t  7 = 0 occurs a t  

and is given by I &-do I max = I do I (at + b;) E - , (12 I‘) 
where (C 13) 
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